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Abstract. We consider the fluctuation conductivity in the critical region of a disorder induced quantum
phase transition in layered d-wave superconductors. We specifically address the fluctuation contribution
to the system’s conductivity in the limit of large (quasi-two-dimensional system) and small (quasi-three-
dimensional system) separation between adjacent layers of the system. Both in-plane and c-axis con-
ductivities were discussed near the point of insulator-superconductor phase transition. The value of the
dynamical critical exponent, z = 2, permits a perturbative treatment of this quantum phase transition
under the renormalization group approach. We discuss our results for the system conductivities in the
critical region as function of temperature and disorder.

PACS. 74.40.+k Fluctuations (noise, chaos, nonequilibrium superconductivity, localization, etc.) –
73.43.Nq Quantum phase transitions

1 Introduction

A phase transition at T = 0 is usually addressed as a
quantum phase transition (QPT) [1]. In general, QPT’s
are driven by quantum fluctuations controlled by a non-
thermal parameter, namely by impurities, pressure or
magnetic fields [2]. In the case of high temperature super-
conductors (HTSC) a phase transition can be driven both
by disorder or doping [3,4]. As function of disorder the
transition is observed for magnetic and nonmagnetic im-
purities, when the impurity concentration is high enough
to destroy the phase coherence in the system. As function
of doping the standard phase diagram of HTSC presents
two possible QPT’s, corresponding to the end points of the
superconducting region, one in the underdoped region and
the other one in the overdoped region [5,6]. In the under-
doped limit the transition is of superconductor-insulator
type [3], whereas in the overdoped limit the transition is
of superconductor-normal state (metal) type [7].

Modelling high temperature superconductors (HTSC)
as two dimensional (2D) systems can be justified by the
presence of CuO2 planes in their structure. However, when
transport properties in the critical region around the su-
perconducting phase transition are considered, the the-
oretical approach has to take into account the quasi-2D
nature of the system, as it is known that an impor-
tant contribution to the conductivity is given by unusual
strong fluctuations. Different from metallic superconduc-
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tors (MS), HTSC present a strong anisotropy, leading to
differences in the temperature dependance of the trans-
verse and in-plane resistivities, a property which is hard
to explain based on the conventional theory of Fermi liq-
uids [8]. With this in mind, the simplest way to include
the third dimension of the system (c-axis) is to consider
a layered structure in which adjacent CuO2 are coupled
through a tunnelling like term. In the presence of disorder
the role of fluctuations increases, their effect on the trans-
port properties being very important even for the case of
MS [9]. In HTSC, fluctuations are amplified respect to the
MS case, their effects being of main importance as trans-
port along c-axis is considered [10], scattering by virtual
Cooper pairs increasing the transverse resistivity, in con-
trast with the usual effect observed in isotropic MS. The
analysis of the fluctuations effects in superconducting ma-
terials can not distinguish the general symmetry of the
order parameter, which is of s-wave type in MS and of d-
wave type in HTSC [11,12]. The differences between the
two types of symmetry reduce to a constant numerical
prefactor, which from the experimental point of view is
hard to examine. A more important role is played by the
system dimensionality [13]. However, the analysis of the
fluctuation conductivity in systems with a p-wave symme-
try of the order parameter such as Sr2RuO4 [14], reveals
the possibility of tracing the pair symmetry in such sys-
tems [15].

QPT’s are fundamentally different from finite temper-
ature phase transitions as a dynamical critical exponent,
z, needs to be considered in order to apply the scaling
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theory to quantum criticality [16]. For the case of HTSC
the idea of quantum criticality was largely explored, indi-
cations of a 2D superconductor to insulator phase tran-
sition with a z = 1 critical exponent in the underdoped
regime, and a three dimensional (3D) superconductor to
normal state phase transition with z = 2 in the overdoped
regime being identified [5,6]. The disorder induced QPT
in d-wave HTSC was analyzed both at T = 0 [17] and
at finite temperature [18], considering a two dimensional
(2D) system and a dynamical critical exponent z = 2. For
the 2D case, a detailed discussion of the in-plane conduc-
tivity was done by Herbut [17] at T = 0 and by Dalidovich
and Phillips [19,21], with the main conclusion that the dc
conductivity will have a nonuniversal singular part at the
transition point in the quantum critical regime.

In this work we will analyze the disorder induced QPT
in 3D d-wave HTSC considering a layered structure of the
system. Such an analysis will give us the possibility to
study the dimensional crossover of the system as func-
tion of the interlayer distance (s). Despite the fact that
a layered system is by definition an anisotropic 3D sys-
tem, at large interlayer distances (s → ∞) the system
approaches a quasi 2D-structure, such that by varying s
between 0 and ∞ we basically interpolate between 3D and
2D. In the critical region fluctuation effects dominate the
in-plane and c-axis conductivities, which in our calcula-
tion are considered of the Aslamazov-Larkin [9] form. On
the other hand, for a quasi-3D system, at small separa-
tion between adjacent layers, the conductivity conserve
the nonuniversal behavior in the quantum critical regime
observed in the 2D case [21].

The paper is organized as follows. Section 2 presents
our model for the fluctuation propagator in the presence of
disorder for the case of a layered d-wave superconductor.
Section 3 presents the general equations of the renormal-
ization group approach along with their solutions for two
particular regimes, namely, the quantum disorder (QD)
and quantum critical (QC) regimes. Section 4 presents an-
alytical solutions for the in-plane and c-axis conductivities
for the case of large and small interlayer separation in both
QD and QC regimes. Finally, we give our conclusions.

2 Fluctuation propagator in layered systems

We consider that a layered d-wave superconductor in the
presence of disorder can be described by a BCS type
Hamiltonian with an additional term corresponding to a
random interaction potential

H =
∑
k,σ

ε(k)a†
σ(k)aσ(k)

−1
2

∑
σ,σ′

∑
k,k′,q

V (k,k′)a†
σ(k+)a†

σ′ (−k−)aσ′(−k′
−)aσ(k′

+)

+
∑

i

∫
dr‖Ui(r‖)a†

σ(r‖, i)aσ(r‖, i) , (1)

where k± = k ± q/2 and aσ(r‖, i) represents the annihi-
lation operator of an electron with spin σ in the ith layer

of the system. We assume that the electronic spectrum in
the layered system has the form

ε(k) = ε(k‖) + J cos (kzs) − EF , (2)

where k ≡ (k‖, kz), k‖ ≡ (kx, ky), and J is the effective
hopping energy between two adjacent layers situated at a
distance s. The attractive interaction leading to supercon-
ductivity, V (k,k′), is assumed to be separable

V (k,k′) = |g|f(k)f(k′) , (3)

with f(k) = [cos(kxa) − cos(kya)]hd(kzs) for the case of
d-wave symmetry, hd(kzs) being a function reflecting the
z axis dispersion of the system. The life time of the quasi-
particle, τ , is introduce assuming the Born approximation
for the scattering potential and that the random potential
obeys the Gaussian ensemble

ui(r‖) = 0

ui(r‖)uj(r′‖) =
1

2πN(0)τ
δijδ(r‖ − r′‖) , (4)

where the overline denotes the random average and N(0)
the density of states at the Fermi surface. Under such
assumptions the quasiparticle Green’s function is given by

G(k, iωn) =
1

iωn

[
1 + (2τ |ωn|)−1

]
− ε(k)

, (5)

where ωn = (2n+1)πT is the standard fermionic Matsub-
ara frequency.

Following the original procedure introduced by
Aslamazov and Larkin [9] the fluctuation propagator in
the presence of disorder can be calculated as

K−1(q, iωn) =
1

gN(0)
− Π(q, iωn) , (6)

where in this definition ωn = 2nπT denotes a bosonic
Matsubara frequency and

Π(q, iωn)=T
∑
ωm

∑
k

|f(k)|2G(k, iωm)G(q−k, iωn−iωm).

(7)
Note that the summation over momenta k in equation (7)
has to be done assuming a cylindrical symmetry of the
Fermi surface to ensure that the correct symmetry im-
posed by the layered structure of the system is well con-
sidered. The calculation of the fluctuation propagator is
straightforward

K(q, iωn) =
1

N(0)
1

µ0(T, D) + γ|ωn| + ξ2
0q2

‖ + 4
(

ξc0
s

)2

sin2
(

qzs
2

) ,

(8)

where µ0(T, D) = 2π2(Tτ)/3+(D−Dc)/Dc gives the dis-
tance to the phase transition point (D = 1/τ represents
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the disorder variable and Dc = 1.76 Tc0, Tc0 being the
superconducting critical temperature in a clean system),
γ � τ , ξ2

0 = l2/2 (l = vF τ), ξ2
c0 = (Jτs)2/2. According

to the Thouless criterion the phase transition occurs at
K−1(0, 0) = 0, meaning that in our case it can be driven
both by disorder or temperature. At the quantum critical
point (T = 0) the phase transition is induced by disorder,
µ0(T = 0, D = Dc) = 0. On the other hand, in the weak
disorder limit, D < Dc, the phase transition occurs at a
finite temperature such that µ0(T = Tc, D) = 0. The lay-
ered structure of the considered system is well reflected in
the form of the fluctuation propagator K(q, iωn) as it is
easy to see from equation (8). At large interlayer separa-
tion, s → ∞, the last term in the denominator of the right
hand side of the equation becomes small and the fluctu-
ation propagator corresponding to a quasi-2D system is
recovered. When the interlayer separation is small, s → 0,
it is easy to see that the fluctuation propagator will have
the form corresponding to the 3D case. The crossover be-
tween 2D and 3D is then possible as a function of the
interlayer separation, s.

The general form of the action describing the phase
fluctuations in the critical region of the phase transition
can be obtained following the standard procedure [22] to
decouple the standard BCS action as

Seff =
∑

q

φ†(q)K−1(q)φ(q)

+
u

4

∑
q1···q4

φ(q1) · · ·φ(q4)δ (q1 + q2 + q3 + q4) , (9)

where φ(q) are the fluctuation field operators, and u mea-
sure the interaction between fluctuations. In the above
equation, q ≡ (q, ωn) and

∑
q

· · · → kBT
∑

n

∫
ddq

(2π)d
,

d being the system dimensionality.

3 Renormalization-group analysis
of the transport properties

For a detailed analysis of the transport properties in the
critical region of a QPT we will use the general formal-
ism of the renormalization group approach introduced by
Hertz [16] and developed lately by Millis [23]. The main
idea in the transport properties evaluation is that accord-
ing to the renormalization group approach the conductiv-
ity obeys the scaling relation [20,21]

σαβ(µ0, T, ω, u) = e(d−2)l∗σ∗
αβ [T (l∗), ω(l∗), u(l∗)] , (10)

where the scaling l∗ is defined such as the renormaliza-
tion procedure stop at l∗ given by µ(l∗) = 1. The as-
terisk denotes that the conductivity is considered at the
fixed point, i.e., for l = l∗. For the most general case the

renormalization group equations corresponding to the ac-
tion given by equation (9) can be obtained performing the
standard scaling k = k′/b and ωn = ω′

n/bz (b = ln (l)) as

dΓ (l)
dl

= (z − 2)Γ (l) , (11a)

dT (l)
dl

= z T (l) , (11b)

dµ(l)
dl

= 2µ(l) +
KdΓ (l)u(l)

exp
[

Γ (l)
T (l) (Λ2 + µ(l))

]
− 1

, (11c)

du(l)
dl

= [4 − (d + z)]u(l)

− 2KdΛ
dT 2(l)

4T (l) sinh2
[

Γ (l)
T (l) (Λ2 + µ(l))

]u2(l) , (11d)

where z denotes the dynamical critical exponent, Γ = 1/γ,
Kd is a dimension dependent constant, and Λ(l) is a mo-
menta cutoff. The set of equations (11) admit an unstable
Gaussian fixed point at Γ = T = µ = u = 0. In the
following we will consider separately the quantum disor-
der and quantum critical regimes, as the renormalization
group equations lead to different solutions near the Gaus-
sian fixed point.

3.1 Quantum disorder regime

In the quantum disorder regime (µ0 � T ) for the case
d = 3 and z = 2 the renormalization group equations can
be solved relatively easy. The first two equations, (11a)
and (11b), lead to simple solutions, namely Γ (l) = const.
and T (l) = T e2l, respectively. Because d + z > 4, u is
irrelevant and as a consequence the second term in equa-
tion (11c) can be neglected leading to µ(l) = µ0 e2l. Ac-
cordingly, the renormalization procedure will be stopped
at

l∗ =
1
2

ln
1
µ0

, (12)

µ0 being the initial value of the distance to the phase tran-
sition point. The system temperature at the fixed point
becomes

T (l∗) =
T

µ0
. (13)

Note that a solution for the interaction term can be ob-
tained as u(l∗) ∼ √

µ0, a result which is in agreement with
the initial discussion of the interaction irrelevance in the
d = 3, z = 2 case.

3.2 Quantum critical regime

The quantum critical regime is defined by µ0 � T . In
this case the integration of the renormalization group
equations is more complicated as the critical region
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around the phase transition consists of two different do-
mains, associated to quantum and classical effects. The
crossover between the two domains is characterized by
l̃ = [ln (1/T )]/2, such that T (l̃) = 1. The integration over
the scaling has to be split in two domains, corresponding
to quantum (l < l̃) and classical (l̃ < l < l∗) behav-
ior. Consider now equation (11c), which will lead to the
general equation for the scaling l∗ at which the renormal-
ization procedure is stopped (µ(l∗) = 1). An approximate
solution of this equation can be obtained in two steps.
First we introduce a new scaling variable, l′ = l − l̃, and
secondly we neglect µ(l) in the exponential term occurring
in the right hand side of the equation. The equation can
be rewritten as

dµ(l′)
dl′

= 2µ(l′) +
K3 u

exp [e−2l′ ] − 1
, (14)

and admits the following solution

µ(l′) =
K3 u

2
ln

(
e − 1

exp [e−2l′ ] − 1

)

− K3 u

2

(
1 − e−2l′

)
. (15)

Without loss of generality we assumed in both equa-
tions (14) and (15) that Λ2 = 1. The renormalization
procedure will be stopped at l∗ satisfying the following
condition

2
K3 u

= 1 − e2(l∗−l̃) + 2(l∗ − l̃) e2(l∗−l̃) . (16)

Finding an exact analytical solution for the above equa-
tion is not possible, so we chose to solve the equation it-
eratively, the solution within double logarithmic accuracy
being of the form

l∗ =
1
2

ln
[

2
T K3 u ln [2/(K3 u)]

]
. (17)

The corresponding renormalized temperature is

T (l∗) =
2

K3 u ln [2/(K3 u)]
. (18)

In the following we will turn our attention to the sys-
tem’s conductivity. We will evaluate the main contribution
to the conductivity in the framework of the renormaliza-
tion group approach.

4 Fluctuation conductivity in layered systems

The main contribution to the system conductivity will be
calculated following Aslamazov and Larkin [9] based on
the Kubo formula. The layered structure of the system is
associated to the conductivity anisotropy in the system
and accordingly we will have to estimate different con-
tributions for the in-plane and c-axis conductivities. Fol-
lowing Varlamov et al. [10] the main contribution to the
conductivity tensor can be calculated as

σ∗
αβ = − lim

ω→0

1
iω

[Qαβ]R(ω) , (19)

where Qαβ(ω) represents the electromagnetic response op-
erator which contribute to the fluctuation conductivity of
the layered system. In equation (19) the subscripts (α, β)
represents the polarization directions and R denotes the
retarded part of the operator. A diagrammatic evaluation
of the electromagnetic response operator (see Ref. [10])
leads to the following general form of the conductivity

σ∗
αβ =

2πξ4
0m2

RQT (l∗)

∫
dω

sinh2
(

ω
2T (l∗)

)

×
∫

d2q‖
(2π)2

∫ π/s

−π/s

dqz

2π
vαvβ

[
ImKR(q, ω)

]2
, (20)

where RQ = π�/(2e2), and vα = [∂ε(p)/∂pα]. In equa-
tion (20) the initial integration over momenta was con-
sidered based on the cylindrical symmetry of the system.
Accordingly, the in-plane and respectively the c-axis con-
ductivities become

σ∗
‖ =

8πγξ4
0T (l∗)

RQµ3
0

∫
dω f

(
µ0ω

2γT (l∗)

) ∫
d2q‖
(2π)2

×
∫ π/s

−π/s

dqz

2π

q2
‖{[

1 + ξ2
0

µ0
q2
‖ + 4

µ0

(
ξc0
s

)2

sin2
(

qzs
2

)]2

+ ω2

}2

(21)

and

σ∗
c =

8πγξ4
0T (l∗)

RQµ3
0

∫
dω f

(
µ0ω

2γT (l∗)

) ∫
d2q‖
(2π)2

×
∫ π/s

−π/s

dqz

2π

m2J2s2 sin2 (qzs){[
1+ ξ2

0
µ0

q2
‖ + 4

µ0

(
ξc0
s

)2

sin2
(

qzs
2

)]2

+ω2

}2 ,

(22)

where f(x) = x2/[sinh2 (x)]. A similar way to investigate
the system conductivity was done in reference [15], with
the specification that the final result for the in-plane con-
ductivity is obtained replacing the original layered symme-
try of the system with an isotropic 3D one. However, our
approach is different, as the original cylindrical symmetry
of the system is conserved in the conductivity calculation.
The analytical structure of the integrand in both equa-
tions (21) and (22) allows us to distinguish between the
QD and QC regimes.

4.1 Quantum disorder regime

In the quantum disorder regime, µ0 � T , the main con-
tribution in the integration over the frequency variable
in both parallel and c-axis conductivities is associated to
the ω = 0 point. Based on this approximation the two
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conductivities can be calculated as

σ∗
‖ =

2π2γ2T 2(l∗)
9RQsµ2

0

1 + 2
µ0

(
ξc0
s

)2

{[
1 + 2

µ0

(
ξc0
s

)2
]4

− 4
µ2

0

(
ξc0
s

)4
}3/2

,

(23)
and

σ∗
c =

2π2γ2T 2(l∗)
9RQsµ3

0

s2ξ2
0m2J2{[

1 + 2
µ0

(
ξc0
s

)2
]4

− 4
µ2

0

(
ξc0
s

)4
}3/2

.

(24)
A better understanding of the in-plane and c-axis conduc-
tivities is achieved in the limit of large and small separa-
tion between adjacent layers of the system.

4.1.1 Large interlayer separation, s → ∞

For the large interlayer separation case, s → ∞, which
from the dimensional point of view approaches a quasi 2D
system, the system’s conductivities evaluated at the fixed
point are

σ‖ =
2π2γ2

1

9RQs

T 2

µ6
0

(25)

and

σc =
2π2γ2

1ξ2
0m2J2s

9RQ

T 2

µ7
0

. (26)

Note that equations (26) and (25) were obtained using the
renormalized values for the system’s temperature in the
QD regime. The in-plane and c-axis conductivities have
both the same temperature dependence but different dis-
order dependence close to the QPT point.

4.1.2 Small interlayer separation, s → 0

In the case of small interlayer separation, s → 0, the sys-
tem approaches a quasi 3D system. A simple calculation
of the system’s conductivities at the fixed point leads to

σ‖ =
π2γ2

1

596RQξc0

T 2

µ
11/2
0

(27)

and

σc =
π2γ2

1ξ2
0m2J2s4

36RQξ3
c0

T 2

µ
11/2
0

. (28)

Different from the large interlayer separation case, in the
quasi-3D case the temperature and disorder dependence
of the two conductivities is the same.

4.2 Quantum critical regime

In the QC regime, µ0 � T , we approximate f(x) → 1,
as in this situation x � 1. The analytical forms of the
in-plane and c-axis conductivities are obtained as

σ‖ =
πγT

2RQsµ0

1{[
1 + 2

µ0

(
ξc0
s

)2
]4

− 4
µ2

0

(
ξc0
s

)4
}1/2

(29)

and

σc =
πγT ξ2

0m2J2s

2RQµ2
0

×
1 + 2

µ0

(
ξc0
s

)2

−
{[

1 + 2
µ0

(
ξc0
s

)2
]4

− 4
µ2

0

(
ξc0
s

)4
}1/2

4
µ2

0

(
ξc0
s

)4
{[

1 + 2
µ0

(
ξc0
s

)2
]4

− 4
µ2

0

(
ξc0
s

)4
}1/2

·

(30)

In the following we will consider a simplified form of the
two obtained equations in the limit of large and small
interlayer separation in order to discuss the temperature
and disorder dependence of the conductivity.

4.2.1 Large interlayer separation, s → ∞
For the large interlayer separation between two adjacent
planes of the layered structure the in-plane and c-axis con-
ductivities can be approximated as

σ‖ =
4πγ1

RQs
(
K3u ln 2

K3u

)3

1
µ0T 2

(31)

and

σc =
2πγ1ξ

2
om2J2s

RQ

(
K3u ln 2

K3u

)3

1
µ2

0T
2

. (32)

As in the QD regime, the temperature dependence of the
two conductivities at large separation between adjacent
layers of the system is the same, however, the disorder
dependence of the two conductivities differs.

4.2.2 Small interlayer separation, s → 0

Let us consider now the small interlayer separation case,
resembling the quasi 3D-system. The in-plane and c-axis
conductivities are obtained as

σ‖ =
2πγ1

RQξc0

(
K3u ln 2

K3u

)3

1

µ
1/2
0 T 2

(33)

and

σc =
πγ1ξ

2
0m2J2s4

RQξ3
c0

(
K3u ln 2

K3u

)3

1

µ
1/2
0 T 2

. (34)
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Once again for the quasi-3D case the temperature and
disorder dependence of the two conductivities is similar.

5 Conclusions

In conclusion we presented a detailed analysis of the in-
plane and c-axis conductivities close to the QPT points
identified in d-wave superconductors. We considered that
the system is well described by a layered structure of cou-
pled planes, a model which allowed us to analytically ob-
tained the two components of the system’s conductivity.
For our model, the system dimensionality is fixed at d = 3
despite the fact that large interlayer separation resemble a
quasi-2D dimensional system; at small interlayer separa-
tion the anisotropic 3D system is recovered. The system’s
dimensionality, d = 3, together with the dynamical criti-
cal exponent, z = 2, makes the results of our calculation
suitable to describe the QPT in the overdoped region of
HTSC phase diagram. However, the possibility to interpo-
late between quasi-2D and 3D systems due to the layered
structure of the system can provide a better understand-
ing of the disorder induced phase transition in HTSC in
both underdoped and overdoped regions of the phase di-
agram.

Our estimation of the system’s conductivity was based
on the renormalization group approach. The analysis of
the possible QPT’s in d-wave superconductors was done
by Schneider [5,6] based on a detailed revision of experi-
mental data for correlation length, magnetic penetration
depth, specific heat and resistivity. His conclusions are
different for the two QPT points observed in the under-
doped and overdoped region of the phase diagram. In the
underdoped region a quantum superconductor-insulator
transition was identified, whose characteristics are d = 2
and z = 1. On the other hand, in the overdoped region
a superconductor-normal state transition was identified
with d = 3 and z = 2. The choice of our system symme-
try and implicitly the form of our fluctuation propagator
forced us to consider a fix dimensionality of the system,
namely d = 3, meaning that the point d = 2 is not ac-
cessible to our approximation. We also considered z = 2
according to the experimental data. However, as we can
vary the interlayer separation distance we were able to ap-
proach a quasi-2D system and show that a possible QPT
is present even in this situation, both as function of disor-
der or temperature. In the d = 3, z = 2 limit the analysis
of the renormalization group equations is straightforward,
leading to a Gaussian fixed point. In this situation the
quadratic term in the system action, describing direct in-
teraction between fluctuations, is irrelevant, meaning that
for a certain range of temperature and disorder around the
fixed point we can calculate the system’s conductivity in
the perturbative renormalization group.

We considered two different regimes in our approxima-
tions, namely the quantum disorder regime, T � µ0, and
the quantum critical regime, T � µ0. Analytical results
were presented for both type of conductivities in two dif-
ferent limits, for large and small separation between the

component layers of the system. As a general rule the tem-
perature dependence of the these conductivities is similar
for all situations in our calculation, as long as we consider
the same regime. On the other hand, for both large and
small interlayer separation limits, when we lower the tem-
perature the system resistivity should be nonmonotonic,
a dip at a temperature of the order T ∼ µ0 being present.
A similar result was reported in reference [21] for the case
d = 2 and z = 2, which actually can be seen as a ex-
treme limit of our calculation. The situation changes as
we investigate the disorder dependence of the conductiv-
ities. At small separation between adjacent layers, when
we approach a quasi-3D system both in-plane and c-axis
conductivities diverge at the critical disorder point follow-
ing the same power law, whatever we are in the quantum
disorder or quantum critical regime. At large separation,
when the system resemble a quasi-2D one, the behavior of
the in-plane and c-axis conductivities at the QCP are dif-
ferent as function of disorder. Despite the fact that both
conductivities diverge at the critical disorder point fol-
lowing power laws, the divergence observed for the c-axis
conductivity is stronger.

The case of a pure 2D system was previously consid-
ered by Dalidovich and Phillips [21] at finite tempera-
ture, and by Herbut at T = 0 [17]. Our result for the
in-plane conductivity, at large separation between adja-
cent layers of the system, is similar to the one obtained
in reference [21]. Some differences occurs due to the dif-
ferent system dimensionality and a difference between the
form of the quasiparticle propagator consider here and in
reference [21]. However, the main result for the two dimen-
sional case, which states that the in-plane conductivity in
the quantum critical regime is non universal and increase
as function of temperature when the QCP (T → 0) is
approached was also proved in our calculation. Moreover,
our investigation presents qualitative results also for the
quasi-3D case, which is relevant for the case of d-wave
superconductors, where, despite the fact that conduction
in the superconducting phase is attributed to the CuO
planes, the system is a 3D one.
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